If (x:y)=2: 1,then(x^2-y^2): (x^2+ y^2) is
$$If (x:y)=2: 1,then(x^2-y^2): (x^2+ y^2) is: $$
A3:5
B5:3
C1:3
D3:1
All DiscussionsClick here to write answer
Post your answers here:
Post
$$If (x:y)=2: 1,then(x^2-y^2): (x^2+ y^2) is: $$
Nithin K ? Apr 17 '2018 at 21:20
Correct Answer: 3:5
Explanation:
\(\frac{x}{y}=\frac{2}{1} \text{ (Given)}\)
\(\text{Expression} = \frac{x^2-y^2}{x^2+y^2} = \frac{\frac{x^2}{y^2}-1}{\frac{x^2}{y^2}+1}\)
\(=\frac{(\frac{2}{1})^2-1}{(\frac{2}{1})^2+1}= \frac{4-1}{4+1}=\frac{3}{5}\)
Correct Answer: 3:5
Explanation:
\(\frac{x}{y}=\frac{2}{1} \text{ (Given)}\)
\(\text{Expression} = \frac{x^2-y^2}{x^2+y^2} = \frac{\frac{x^2}{y^2}-1}{\frac{x^2}{y^2}+1}\)
\(=\frac{(\frac{2}{1})^2-1}{(\frac{2}{1})^2+1}= \frac{4-1}{4+1}=\frac{3}{5}\)
All Comments