If x + y = 25 and xy = 35, then 1/x + 1/y =?
If x + y = 25 and xy = 35, then 1/x + 1/y =?
A$$ \frac{\sqrt{57}}{57} $$
B$$ \frac{7}{5} $$
C$$ \frac{5}{7} $$
D$$ \frac{\sqrt{75}}{75} $$
All DiscussionsClick here to write answer
correct answer is: \(\frac{5}{7}\)
Explanation: To find \( \frac{1}{x} + \frac{1}{y} \), we use the identity \( \frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy} \) Given \( x + y = 25 \) and \( xy = 35 \), we substitute these values into the equation: \[ \frac{1}{x} + \frac{1}{y} = \frac{25}{35} = \frac{5}{7} \] Thus, the correct answer is \( \frac{5}{7} \)
- OPTION A: Incorrect. \( \frac{\sqrt{57}}{57} \) does not simplify to the correct value.
- OPTION B: Incorrect. \( \frac{7}{5} \) is the reciprocal of the correct answer.
- OPTION C: Correct. \( \frac{5}{7} \) matches the derived result.
- OPTION D: Incorrect. \( \frac{\sqrt{75}}{75} \) simplifies to \( \frac{\sqrt{3}}{15} \), which is not the correct value.
Post your answers here:
Post
